Antioxid Redox Signal 2000 Fall;2(3):473-83

Title

(R)-alpha-lipoic acid reverses the age-associated increase in susceptibility of hepatocytes to tert-butylhydroperoxide both in vitro and in vivo.

Author

Hagen TM, Vinarsky V, Wehr CM, Ames BN.

Source

Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.

Abstract

Hepatocytes were isolated from young (3-5 months) and old (24-28 months) rats and incubated with various concentrations of tert-butylhydroperoxide (t-BuOOH). The t-BuOOH concentration that killed 50% of cells (LC50) in 2 hr declined nearly two-fold from 721 +/- 32 microM in cells from young rats to 391 +/- 31 microM in cells from old rats. This increased sensitivity of hepatocytes from old rats may be due, in part, to changes in glutathione (GSH) levels, because total cellular and mitochondrial GSH were 37.7% and 58.3% lower, respectively, compared to cells from young rats. Cells from old animals were incubated with either (R)- or (S)-lipoic acid (100 microM) for 30 min prior to the addition of 300 microM t-BuOOH. The physiologically relevant (R)-form, a coenzyme in mitochondria, as opposed to the (S)-form significantly protected hepatocytes against t-BuOOH toxicity. Dietary supplementation of (R)-lipoic acid [0.5% (wt/wt)] for 2 weeks also completely reversed the age-related decline in hepatocellular GSH levels and the increased vulnerability to t-BuOOH as well. An identical supplemental diet fed to young rats did not enhance the resistance to t-BuOOH, indicating that antioxidant protection was already optimal in young rats. Thus, this study shows that cells from old animals are more susceptible to oxidant insult and (R)-lipoic acid, after reduction to an antioxidant in the mitochondria, effectively reverses this age-related increase in oxidant vulnerability.